

Django Public Admin

A public and read-only version of the Django Admin [https://docs.djangoproject.com/en/3.0/ref/contrib/admin/]. A drop-in replacement for Django’s native AdminSite and ModelAdmin for publicly accessible data.

How does it work

	public_admin.sites.PublicApp wraps Django apps and models you want to make public.

	public_admin.sites.PublicAdminSite works as a clone of Django’s native AdminSite, but it looks at the HTTP request and the URL to decide whether they should exist in a public and read-only dashboard.

	public_admin.admin.PublicModelAdmin work as a clone of Django’s native ModelAdmin, but what it does is to stop actions that would create, edit or delete objects.

Install

pip install django-public-admin

Table of contents:

	Usage
	Declare which apps and models you want to make public

	Create your Django Public Admin instance

	Create and register your PublicModelAdmin

	Add your Django Public Admin URLs

	Templates

	Example
	Requirements

	Running the example

	API

References

	Index

	Module Index

	Search Page

Usage

Declare which apps and models you want to make public

Let’s say you have a Django app called my_open_house with models Beverage and Snack that you want their data to de public. Use public_admin.sites.PublicApp to declare that:

from public_admin.sites import PublicApp

public_app = PublicApp("my_open_house", models=("Beverage", "Snack"))

Create your Django Public Admin instance

Just like one would create a regular admin.py, you can create a module public_admin.sites.PublicAdminSite and public_admin.admin.PublicModelAdmin:

from public_admin.sites import PublicAdminSite, PublicApp

public_app = PublicApp("my_open_house", models=("beverage", "snack"))
public_admin = PublicAdminSite("dashboard", public_app)

The first argument is the name of this site in Django, and the second argument can be a single instance of public_admin.sites.PublicApp or a sequence of them.

Create and register your PublicModelAdmin

from public_admin.admin import PublicModelAdmin

from my_open_house.models import Beverage, Snack

class BeverageModelAdmin(PublicModelAdmin):
 # ...

class SnackModelAdmin(PublicModelAdmin):
 # ...

public_admin.register(Beverage, BeverageModelAdmin)
public_admin.register(Snack, SnackModelAdmin)

Add your Django Public Admin URLs

In your urls.py, import the public_admin (or whatever you’ve named it earlier) in your URLs file and create the endpoints:

from django.urls import path

from my_website.my_open_house.admin import public_admin

urlpatterns = [
 # …
 path("dashboard/", public_admin.urls)
]

Templates

Django Public Admin comes with a template that hides from the UI elements related to non-logged-in users (elements such as login and logout links, recent actions panel, etc.). These templates are designed in a way to preserve the behavior of a regular instance of Django’s native admin for logged-in users. To use it, add "public_admin" to your INSTALLED_APPS before django.contrib.admin:

INSTALLED_APPS = [
 "public_admin",
 "django.contrib.admin",
 # ...
]

If you decide not to use this template, you have to create your own templates/admin/base.html file to avoid errors when rendering the template. Django will fail, for example, in rendering URLs that do not exist, which would be the case for login and logout.

Example

There is an example app in Django Public Admin repository [https://github.com/cuducos/django-public-admin/], inside the example/ directory. This example is meant to be a straightforward use case, having Django’s native admin running in parallel with Django Public Admin.

Requirements

	Git

	Python 3.6 or newer with Poetry [https://python-poetry.org] (or other PEP 517 [https://www.python.org/dev/peps/pep-0517/] pyproject.toml compatible tool)

Running the example

First, clone the repository and install the dependencies:

git clone https://github.com/cuducos/django-public-admin.git
poetry install

Then start the application:

poetry run python example/manage.py runexample

The runexample command is a wrapper around Django’s native runserver. It creates a temporary SQLite database, run migrations, creates a superuser, and collects static files automagically before spinning up the development server. If you are having trouble with this command, you can try to delete all these temporary files with poetry run python manage.py cleanexample.

Once the application is up and running, you can:

	Access the Django’s native admin, password protected (username is admin and password is also admin) at localhost:8000/admin [http://localhost:8000/admin/]

	Access the Django Public Admin, with no login needed at localhost:8000/dashboard [http://localhost:8000/dashboard/]

You can add and edit data at admin/, while non-logged-in users can browse data at dashboard/ with all the filters and perks of a Django Admin instance!

API

	
class public_admin.sites.PublicApp(name, models)

	Holds the permission strings for each model in a Django app. name
should be the name of a Django app as string, and models should be a
sequence of strings with the name of the models to allowed in a public
admin.

	
class public_admin.sites.DummyUser(public_apps, *args, **kwargs)

	Mimics the Django’s native AnonymousUser injecting permissions to view
objects from certain Django apps and models.`pubic_apps` should be a
sequence of instances of public_admin.sites.PublicApp.

	
has_module_perms(app_label)

	Only grant permission if the app was passed as a
public_admin.sites.PublicApp.

	
has_perm(permission, obj=None)

	Only grant permission if the app and model were passed in a
public_admin.sites.PublicApp.

	
class public_admin.sites.PublicAdminSite(name='public_admin', public_apps=())

	Mimics the Django’s native AdminSite but removing URLs and permissions
that does not match the idea of a public admin. name is the name of this
admin site (the string Django uses to build the URL names, for example),
and pubic_apps can be one instance of public_admin.sites.PublicApp or a
sequence of them.

	
admin_view(view, cacheable=False)

	Injects the public_admin.sites.DummyUser in every request in this
admin site.

	
has_permission(request)

	Blocks all non-GET requests.

	
urls

	List the URLs in this admin site.

	
static valid_url(url)

	This method removes URLs based on their path.

	
class public_admin.admin.PublicModelAdmin(model, admin_site)

	This mimics the Django’s native ModelAdmin but filters URLs that should
not exist in a public admin, and deals with request-based permissions.

	
get_urls()

	Filter out the URLs that should not exist in a public admin.

	
has_add_permission(request)

	Denies permission to any request trying to add new objects.

	
has_change_permission(request, obj=None)

	Denies permission to any request trying to change objects.

	
has_delete_permission(request, obj=None)

	Denies permission to any request trying to delete objects.

	
has_view_permission(request, obj=None)

	Only allows view requests if the method is GET

Index

 A
 | D
 | G
 | H
 | P
 | U
 | V

A

 	
 	admin_view() (public_admin.sites.PublicAdminSite method)

D

 	
 	DummyUser (class in public_admin.sites)

G

 	
 	get_urls() (public_admin.admin.PublicModelAdmin method)

H

 	
 	has_add_permission() (public_admin.admin.PublicModelAdmin method)

 	has_change_permission() (public_admin.admin.PublicModelAdmin method)

 	has_delete_permission() (public_admin.admin.PublicModelAdmin method)

 	
 	has_module_perms() (public_admin.sites.DummyUser method)

 	has_perm() (public_admin.sites.DummyUser method)

 	has_permission() (public_admin.sites.PublicAdminSite method)

 	has_view_permission() (public_admin.admin.PublicModelAdmin method)

P

 	
 	PublicAdminSite (class in public_admin.sites)

 	
 	PublicApp (class in public_admin.sites)

 	PublicModelAdmin (class in public_admin.admin)

U

 	
 	urls (public_admin.sites.PublicAdminSite attribute)

V

 	
 	valid_url() (public_admin.sites.PublicAdminSite static method)

 nav.xhtml

 Table of Contents

 		
 Django Public Admin

 		
 Usage

 		
 Declare which apps and models you want to make public

 		
 Create your Django Public Admin instance

 		
 Create and register your PublicModelAdmin

 		
 Add your Django Public Admin URLs

 		
 Templates

 		
 Example

 		
 Requirements

 		
 Running the example

 		
 API

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

